Theoretical Study on Synchronous Characterization of Surface and Interfacial Mechanical Properties of Thin-Film/Substrate Systems with Residual Stress Based on Pressure Blister Test Technique

نویسندگان

  • Zhi-xin Yang
  • Jun-yi Sun
  • Ke Li
  • Yong-sheng Lian
  • Xiao-ting He
چکیده

In this study, based on the pressure blister test technique, a theoretical study on the synchronous characterization of surface and interfacial mechanical properties of thin-film/substrate systems with residual stress was presented, where the problem of axisymmetric deformation of a blistering film with initial stress was analytically solved and its closed-form solution was presented. The expressions to determine Poisson’s ratios, Young’s modulus, and residual stress of surface thin films were derived; the work done by the applied external load and the elastic energy stored in the blistering thin film were analyzed in detail and their expressions were derived; and the interfacial adhesion energy released per unit delamination area of thin-film/substrate (i.e., energy release rate) was finally presented. The synchronous characterization technique presented here has theoretically made a big step forward, due to the consideration for the residual stress in surface thin films.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thin Film Heterogeneous Ion Exchange Membranes Prepared by Interfacial Polymerization of PAA-co-Iron-Nickel Oxide Nanoparticles on Polyvinylchloride Based Substrate

In this research thin film heterogeneous cation exchange membrane was prepared by interfacial polymerization of polyacrylic acid-co-iron nickel oxide nanoparticle son PVC based substrate. Spectra analysis confirmed graft polymerization conclusively. The SEM images showed that polymerized layer covers the membranes by simple gel network entanglement. Results exhibited that membrane water content...

متن کامل

Design and investigation of TiO2 –SiO2 thin films on AISI 316L stainless steel for tribological properties and corrosion protection

The TiO2–SiO2 thin films were deposited on AISI 316L stainless steel via sol-gel method. Then, the effect of the added amount of SiO2 on the structure, morphology and mechanical properties of the films and corrosion behavior of AISI 316L stainless steel substrate were investigated. So, X-ray diffraction, field-emission scanning electron microscopy, atomic force microscopy, depth-sensing indenta...

متن کامل

Atomic Simulation of Temperature Effect on the Mechanical Properties of Thin Films

The molecular dynamic technique was used to simulate the nano-indentation test on the thin films of silver, titanium, aluminum and copper which were coated on the silicone substrate. The mechanical properties of the selected thin films were studied in terms of the temperature. The temperature was changed from 193 K to 793 K with an increment of 100 K. To investigate the effect of temperature on...

متن کامل

Micromechanical characterization of ALD thin films

Aalto University, P.O. Box 11000, FI-00076 Aalto www.aalto.fi Author Maria Berdova Name of the doctoral dissertation Micromechanical characterization of ALD thin films Publisher School of Chemical Technology Unit Materials Science and Engineering Series Aalto University publication series DOCTORAL DISSERTATIONS 119/2015 Field of research Microelectromechanical systems Manuscript submitted 31 Au...

متن کامل

Substrate Effects on the Structural Properties of Thin Films of Lead Sulfide

Nanocrystalline PbS thin films are deposited on glass and alumina substratesthrough the chemical bath deposition technique by creating similar conditions, in orderto investigate the effects of the substrate. The structural and optical properties of PbSfilms are investigated by X-ray diffraction, scanning electron microscope, and UV–Vis.The structural analyses of the films indicate that they are...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018